河南大学数据分析技术实验室

设为首页  |  加入收藏

 首页  研究中心概况  新闻动态  研究队伍  科研成果  合作交流  人才培养  下载中心 
新闻动态

河南大学数学与统计学院在第七届 06-19
Empirical likelihood in single 05-13
现代人工智能的本质、途径和方向 04-13
热烈祝贺武相军教授荣登“爱思唯 03-28
数学与统计学院优秀毕业生分享交 03-24
(开启)人工智能理论及算法—应用 03-24
河南大学数学与统计学院“人工智 03-20
Limit Theory for the Autoregre 12-13
Learning without Paired Data i 12-08
Mathematical Modeling for Biom 12-08

新闻动态
您的位置: 首页>>新闻动态>>正文

3-dynamic coloring of planar triangulations
2018-05-28 16:30  

报告人: Seog-Jin Kim教授

工作单位: 韩国建国大学

报告时间:5月29日下午4:00

报告地点:学院一楼报告厅

报告摘要:

An r-dynamic k-coloring of a graph G is a proper k-coloring _ such that for any vertex v, v has at least minfr; degG(v)g distinct colors in NG(v). The r-dynamic chromatic number _dr(G) of a graph G is the least k such that there exists an r-dynamic k-coloring of G. The list r-dynamic chromatic number of a graph G is denoted by chdr(G). Loeb, Mahoney, Reiniger and Wise (2018) showed that if G is a planar graph, then _d3 (G) _ 10, and there is a planar graph G with_d3 (G) = 7. Thus _nding an optimal upper bound on _d3 (G) for a planar graph G is a natural interesting problem. In this paper, we show that _dr(G) _ 5 if G is a planar triangulation. The upper bound is sharp. This is joint work with Yoshihiro Asayama, Yuki Kawasaki, Atsuhiro Nakamoto, and Kenta Ozeki.

报告人简介:

Seog-jin Kim,韩国建国大学教授,2003年获得美国伊利诺伊大学香槟分校博士学位,主要研究图分解和图染色问题,在《J.Combin.TheorySer. B》,《J.Graph Theory》,《Discrete Math.》等国际著名SCI期刊发表30多篇学术论文。

#from:http://maths.henu.edu.cn/info/1021/2651.htm

关闭窗口