河南大学数据分析技术实验室

设为首页  |  加入收藏

 首页  研究中心概况  新闻动态  研究队伍  科研成果  合作交流  人才培养  下载中心 
新闻动态

河南大学数学与统计学院在第七届 06-19
Empirical likelihood in single 05-13
现代人工智能的本质、途径和方向 04-13
热烈祝贺武相军教授荣登“爱思唯 03-28
数学与统计学院优秀毕业生分享交 03-24
(开启)人工智能理论及算法—应用 03-24
河南大学数学与统计学院“人工智 03-20
Limit Theory for the Autoregre 12-13
Learning without Paired Data i 12-08
Mathematical Modeling for Biom 12-08

新闻动态
您的位置: 首页>>新闻动态>>正文

A Linear Reaction-Diffusion System with Interior Degeneration for Color Image
2018-07-05 11:31  

报告人:张达治

工作单位:哈尔滨工业大学理学院

报告时间:7月7日下午3点

报告地点:数学与统计学院一楼报告厅

报告摘要:

We considers colorization-based image compression in RGB color space. In compression, we store only the compressed luminance component of the original color image and a few representative pixels extracted from the original color image. In decompression, by explicitly introducing the relation between the luminance component and the original color image into diffusion equations, a linear reaction-diffusion system with Perona-Malik type diffusion coefficient is proposed to reconstruct R, G and B channels simultaneously. The Perona-Malik type diffusion coefficient is a function of the luminance component and leads to interior degenerations, in general. It yields anisotropic smoothing in the restored color image and constrains the geometry of the restored image to follow the geometry of the luminance component. The existence and uniqueness of solutions for the proposed system with a specific class of diffusion coefficients are proved in a weighted Sobolev space. The selection of representative pixels has a big impact on reconstruction results. We also propose a local-optimal strategy that splits the original color image into a series of different size subimages and searches the optimal representative pixel in each subimage. Comparisons with recent colorization-based image compression methods, as well as transform-based JPEG and JPEG2000 standards are performed to show the potential for successful compression applications of the proposed method.

报告人简介:

张达治, 分别于2000年、2003年、2006年在吉林大学数学学院获得学士、硕士、博士学位。2006年至今,工作于哈尔滨工业大学数学系,副教授,博士生导师。研究方向为:偏微分方程数值解、基于偏微分方程的图像处理,目前已在相关领域发表SCI论文20余篇.



关闭窗口