河南大学数据分析技术实验室

设为首页  |  加入收藏

 首页  研究中心概况  新闻动态  研究队伍  科研成果  合作交流  人才培养  下载中心 
新闻动态

河南大学数学与统计学院在第七届 06-19
Empirical likelihood in single 05-13
现代人工智能的本质、途径和方向 04-13
热烈祝贺武相军教授荣登“爱思唯 03-28
数学与统计学院优秀毕业生分享交 03-24
(开启)人工智能理论及算法—应用 03-24
河南大学数学与统计学院“人工智 03-20
Limit Theory for the Autoregre 12-13
Learning without Paired Data i 12-08
Mathematical Modeling for Biom 12-08

新闻动态
您的位置: 首页>>新闻动态>>正文

Nonmetric Multidimensional Scaling: Feasibility, Algorithms and Applications
2020-11-11 19:53  

报告题目:Nonmetric Multidimensional Scaling: Feasibility, Algorithms and Applications

主 讲 人:李庆娜

单 位:北京理工大学

时 间:11月23日14:30-16:00

腾 讯 ID:648 168 751

密 码:

摘 要:

Nonmetric multidimensional scaling(NMDS) is an important tool in data science to deal with dissimilarity data. In this talk, we will discuss the feasibility, numerical algorithms and the applications of NMDS, mainly based on the rank constraint Euclidean distance matrix model for NMDS. Despite the long history of NMSD, the feasibility issue of NMDS has been rarely discussed, which motivates us to take a systematical investigation of it. The challenges of designing efficient numerical algorithms for NMDS are the nonconvex constraint as well as the huge number of ordinal constraints. We will also discuss several numerical algorithms for NMDS, trying to tackling the two challenges in different ways. For applications, besides the traditional application such as sensor network localization, protein molecular conformation, we will also apply NMDS model to image ranking and posture sensing.

关闭窗口