河南大学数据分析技术实验室

设为首页  |  加入收藏

 首页  研究中心概况  新闻动态  研究队伍  科研成果  合作交流  人才培养  下载中心 
新闻动态

河南大学数学与统计学院在第七届 06-19
Empirical likelihood in single 05-13
现代人工智能的本质、途径和方向 04-13
热烈祝贺武相军教授荣登“爱思唯 03-28
数学与统计学院优秀毕业生分享交 03-24
(开启)人工智能理论及算法—应用 03-24
河南大学数学与统计学院“人工智 03-20
Limit Theory for the Autoregre 12-13
Learning without Paired Data i 12-08
Mathematical Modeling for Biom 12-08

新闻动态
您的位置: 首页>>新闻动态>>正文

Bayesian Estimation and Variable Selection via Structured Elastic Net
2021-01-10 15:46  

报告题目:Bayesian Estimation and Variable Selection via Structured Elastic Net

主 讲 人:王 海 斌

单 位:厦门大学

时 间: 1月11号15:00

地 点:数学与统计学院一楼报告厅

摘 要:

Structured elastic net is a rather general and flexible technique of regularization and variable selection, which includes the elastic net, the smooth lasso and the spline lasso as special cases. We consider a fully Bayesian method to make statistical inference about it. Main difficulty lies in that there exists an intractable term in the full conditional posterior of the tuning parameters, which makes ordinary MH algorithm unusable. We develop an exchange algorithm and a double MH sampler, respectively, to address this difficulty. We also consider an empirical posterior credible interval method with ``adaptively level'' for variable selection. The proposed methods are illustrated by the simulated examples, and applied to the diabetes and the biscuit dough datasets.

简 介:

王海斌,厦门大学数学科学学院教授、博士生导师,中国现场统计研究会理事、中国现场统计研究会高维数据统计分会理事。主要从事潜在变量模型、非/半参数统计模型及时间序列分析的研究工作。主持完成国家和福建省自然科学基金面上项目多项。多次应邀赴香港中文大学统计系进行合作研究。已在British Journal of Mathematical and Statistical Psychology、Computational Statistics and Data Analysis、Journal of Applied Probability等国内外数学、概率、统计、计量心理学等重要学术期刊上发表学术论文30余篇。


关闭窗口