河南大学数据分析技术实验室

设为首页  |  加入收藏

 首页  研究中心概况  新闻动态  研究队伍  科研成果  合作交流  人才培养  下载中心 
新闻动态

河南大学数学与统计学院在第七届 06-19
Empirical likelihood in single 05-13
现代人工智能的本质、途径和方向 04-13
热烈祝贺武相军教授荣登“爱思唯 03-28
数学与统计学院优秀毕业生分享交 03-24
(开启)人工智能理论及算法—应用 03-24
河南大学数学与统计学院“人工智 03-20
Limit Theory for the Autoregre 12-13
Learning without Paired Data i 12-08
Mathematical Modeling for Biom 12-08

新闻动态
您的位置: 首页>>新闻动态>>正文

Splitting Methods for a Class of Structured Optimization Problems and Their Applications
2021-05-07 08:12  

报告题目Splitting Methods for a Class of Structured Optimization Problems and Their Applications

人:吴中明

位:南京信息工程大学

间:5139:00

ID938 777 476


In this talk, we introduce severalsplitting methods for a class of structured convex/nonconvex optimization problems, which capture many applications in signal and image processing, statistics and machine learning.We first propose an inertial proximal gradient method for minimizing the sum of two possibly nonconvex functions. This method includes two different inertial steps and adopts the Bregman regularization in solving the subproblem. To overcome the parameter constraints, we further propose a nonmonotone line search strategy to make the parameter selections more flexible. Moreover, we introduce the inexact primal-dual splitting methods to solve a class of more general convex composited optimization problems. Some numerical results on sparse optimization and image processing problems are reported to demonstrate the effectiveness and superiority of the proposed methods.


介:

吴中明,南京信息工程大学副教授,硕士生导师,201912月博士毕业于东南大学,曾前往新加坡国立大学学习交流一年。研究方向为最优化理论、算法及其应用。主持国家自然科学基金青年科学基金和江苏高校哲学社科基金项目,入选2020年江苏省“双创博士”人才计划。在Computational Optimization and Applications、Journal of Optimization Theory and Applications、Journal of Global Optimization、Mathematics of Computation、International Transactions in Operational Research、系统工程理论与实践等期刊发表论文二十余篇。

 

关闭窗口