河南大学数据分析技术实验室

设为首页  |  加入收藏

 首页  研究中心概况  新闻动态  研究队伍  科研成果  合作交流  人才培养  下载中心 
新闻动态

河南大学数学与统计学院在第七届 06-19
Empirical likelihood in single 05-13
现代人工智能的本质、途径和方向 04-13
热烈祝贺武相军教授荣登“爱思唯 03-28
数学与统计学院优秀毕业生分享交 03-24
(开启)人工智能理论及算法—应用 03-24
河南大学数学与统计学院“人工智 03-20
Limit Theory for the Autoregre 12-13
Learning without Paired Data i 12-08
Mathematical Modeling for Biom 12-08

新闻动态
您的位置: 首页>>新闻动态>>正文

Hybrid BM3D and PDE Filtering for Non-Parametric Single Image Denoising
2021-09-23 07:43  

报告题目:Hybrid BM3D and PDE Filtering for Non-Parametric Single Image Denoising

人:郭志昌

位:哈尔滨工业大学

间:92414:00

ID761 524 382


要:

The BM3D method achieves excellent denoising performance, but it has artificial effects and bias effects and its performance largely depends on the noise level parameter. To address this, we propose a hybrid BM3D and PDE method for non-parametric single image denoising. First, a non-local Perona-Malik (NLPM) filtering is proposed, and we prove its discontinuity maintaining, mean invariance, convergence, and local continuity. Based on these mathematical properties, an NLPM based noise level estimator (NLPM-NLE) is explored, which involves three steps: preprocessing by NLPM filtering, sample area selection, parameter estimation. And then, we advance a stable-BM3D (SBM3D) method with NLPM filtering to avoid artificial effects and bias effects. Finally, connecting the NLPM-NLE and SBM3D by merging the same part, we develop a non-parametric single image denoising (NPSID) method. Additionally, our proposed BM3D method with NLPM-NLE and the NPSID are compared with other blind denoising methods including PCA+BM3D, WTP+BM3D, and ESM+BM3D on real image denoising. Experiments show that the proposed non-parametric method can automatically and effectively remove noise and preserve details.


简 介:

郭志昌,哈尔滨工业大学数学学院副教授,博士生导师,计算数学系副主任和计算数学研究所副所长,中国生物医学工程学会医学人工智能分会青年委员,主要分数阶方程的数值理论和在图像恢复中的建模,深度学习卷积神经网络的部分解释,基于PDE和深度学习卷积神经网络的融合模型等方面的研究。在SIAM系列和IEEE系列等高水平期刊上发表学术论文20余篇。现主持国家自然科学基金面上项目1项,曾主持结项国家和省部级项目4项,参与面上基金2项。

关闭窗口